193 research outputs found

    Granular Brownian Motors: role of gas anisotropy and inelasticity

    Full text link
    We investigate the motion of a wedge-shaped object (a granular Brownian motor), which is restricted to move along the x-axis and cannot rotate, as gas particles collide with it. We show that its steady-state drift, resulting from inelastic gas-motor collisions, is dramatically affected by anisotropy in the velocity distribution of the gas. We identify the dimensionless parameter providing the dependence of this drift on shape, masses, inelasticity, and anisotropy: the anisotropy leads to a dramatic breaking of equipartition, which should easily be visible in experimental realizations.Comment: 5 pages, 4 figure

    Fluctuating Currents in Stochastic Thermodynamics II. Energy Conversion and Nonequilibrium Response in Kinesin Models

    Get PDF
    Unlike macroscopic engines, the molecular machinery of living cells is strongly affected by fluctuations. Stochastic Thermodynamics uses Markovian jump processes to model the random transitions between the chemical and configurational states of these biological macromolecules. A recently developed theoretical framework [Wachtel, Vollmer, Altaner: "Fluctuating Currents in Stochastic Thermodynamics I. Gauge Invariance of Asymptotic Statistics"] provides a simple algorithm for the determination of macroscopic currents and correlation integrals of arbitrary fluctuating currents. Here, we use it to discuss energy conversion and nonequilibrium response in different models for the molecular motor kinesin. Methodologically, our results demonstrate the effectiveness of the algorithm in dealing with parameter-dependent stochastic models. For the concrete biophysical problem our results reveal two interesting features in experimentally accessible parameter regions: The validity of a non-equilibrium Green--Kubo relation at mechanical stalling as well as negative differential mobility for superstalling forces.Comment: PACS numbers: 05.70.Ln, 05.40.-a, 87.10.Mn, 87.16.Nn. An accompanying publication "Fluctuating Currents in Stochastic Thermodynamics I. Gauge Invariance of Asymptotic Statistics" is available at http://arxiv.org/abs/1407.206

    Fluctuating Currents in Stochastic Thermodynamics I. Gauge Invariance of Asymptotic Statistics

    Full text link
    Stochastic Thermodynamics uses Markovian jump processes to model random transitions between observable mesoscopic states. Physical currents are obtained from anti-symmetric jump observables defined on the edges of the graph representing the network of states. The asymptotic statistics of such currents are characterized by scaled cumulants. In the present work, we use the algebraic and topological structure of Markovian models to prove a gauge invariance of the scaled cumulant-generating function. Exploiting this invariance yields an efficient algorithm for practical calculations of asymptotic averages and correlation integrals. We discuss how our approach generalizes the Schnakenberg decomposition of the average entropy-production rate, and how it unifies previous work. The application of our results to concrete models is presented in an accompanying publication.Comment: PACS numbers: 05.40.-a, 05.70.Ln, 02.50.Ga, 02.10.Ox. An accompanying pre-print "Fluctuating Currents in Stochastic Thermodynamics II. Energy Conversion and Nonequilibrium Response in Kinesin Models" by the same authors is available as arXiv:1504.0364

    Comment on "A test-tube model for rainfall" by Wilkinson M., EPL 106 (2014) 40001

    Full text link
    This paper is a comment to M Wilkinson, EPL 106 (2014) 40001, arXiv:1401.4620 [physics.ao-ph,cond-mat.soft], which draws conclusion from our data that are at variance with our observations

    Dataflow equations for parallel programs that share memory

    Get PDF

    Impurity-induced step interactions: a kinetic Monte-Carlo study

    Get PDF
    A one-dimensional continuum description of growth on vicinal surfaces in the presence of immobile impurities predicts that the impurities can induce step bunching when they suppress the diffusion of adatoms on the surface. In the present communication we verify this prediction by kinetic Monte-Carlo simulations of a two-dimensional solid-on-solid model. We identify the conditions where quasi one-dimensional step flow is stable against island formation or step meandering, and analyse in detail the statistics of the impurity concentration profile. The sign and strength of the impurity-induced step interactions is determined by monitoring the motion of pairs of steps. Assemblies containing up to 20 steps turn out to be unstable towards the emission of single steps. This behavior is traced back to the small value of the effective, impurity-induced attachment asymmetry for adatoms. An analytic estimate for the critical number of steps needed to stabilize a bunch is derived and confirmed by simulations of a one-dimensional model.Comment: 9 pages, 8 figure
    corecore